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VOCAL TRACT SHAPE IDENTIFICATION FROM
FORMANT FREQUENCY SPECTRA—

A SIMULATION USING THREE-DIMENSIONAL
BOUNDARY ELEMENT MODELS
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Identification of the three-dimensional vocal tract shape from the formant frequency
spectra or transmission characteristic is discussed. The vocal tract wall is modelled by an
assemblage of spline functions, which is deformable about the points of interest.
Three-dimensional boundary elements are incorporated for evaluating the acoustic
transmission characteristics. The identification is treated as an optimization process in such
a way that the norm between some ‘‘measured’’ formant frequencies and those calculated
for the assumed vocal tract shape is minimized by using the DFP algorithm.
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1. INTRODUCTION

The vocal tract plays an important role in speech sound formation. The vocal tract can
be considered to be an acoustic filter that discriminates among the frequency spectra of
sounds produced by vocal cord vibration and transmits the spectra properly chosen for
a particular vowel. The transmission characteristics depend on the the geometrical shape,
for which the cross-sectional area distribution along the vocal tract is believed to be
responsible. The investigation of the vocal tract as an acoustic transmission system is thus
essential for speech analysis, synthesis and identification. To simulate the speech sound
formation process in the vocal tract, realistic three-dimensional models are required.
Three-dimensional vocal tract models have been proposed by using finite and boundary
elements and their capability for evaluating their transmission characteristics have been
discussed [1, 2]. The vocal tract is basically a hollow bent tube whose wall is made of
muscles and whose shape is determined as a result of the movement of jaws, tongue and
mouth together with partial tension in the muscles. The present paper presents an attempt
to determine the three-dimensional vocal tract shape from the ‘‘measured’’ formant
frequencies. There have been many investigations of this kind, but most of them are
concerned about the determination of the cross-sectional area distribution along the vocal
tract for which one-dimensional acoustic transmission models are entitled [3–6]. However,
plane wave assumption corresponding to this one-dimensional modelling cannot be
justified in the higher frequency range, as the measurement of the sound pressure
distribution in the cast replica of the oral cavity shows that a plane wave cannot present
in the oral cavity in higher frequency range [7]. The geometrical shape is therefore one of
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the important factors which determine the details of the acoustical characteristics of the
vocal tract. The drawback of the one-dimensional models also lies in the fact that the
cross-sectional area distribution can easily be obtained from the vocal tract shape given
while, on the contrary, the corresponding three-dimensional geometrical shape cannot be
recovered from the cross-sectional area distribution determined.

In the present paper, a deformable vocal tract expression is first discussed using a set
of spline functions, for which the acoustic transmission field is modelled by the boundary
elements as in the authors’ previous work. Then one proceeds to the determination of the
vocal tract shape from the formant frequencies. The inverse approach is here considered
as an optimization process in which the norm between the ‘‘measured’’ formant frequencies
and the calculated ones for an assumed vocal tract shape is minimized by using the
Davidon–Fletcher–Powell (DFP) algorithm.

2. VOCAL TRACT MODELS AND THEIR ACOUSTIC CHARACTERISTICS

The vocal tract is considered as an acoustic filter and its transmission characteristics in
steady state are numerically evaluated by using boundary element models [2]. The acoustic
transmission system is illustrated as shown in Figure 1. The governing equation and the
boundary conditions are

92p+ k2p=0 in V, (1)

1p/1n=−jvrv̂g on G1, (2)

(for constant velocity excitation at the glottis)

1p/1n=−jvrp/zw on G2, (3)

1p/1n=−jvrp/zr on G3. (4)

Here p is the sound pressure, r the air density, k the wave number (k=v/c, v being the
angular frequency and c the sound speed), j the imaginary unit, 1/1n the normal derivative
to the boundary, zw the wall impedance, zr the radiation impedance at the mouth and vg

the particle velocity at the glottis for excitation. ( ˆ ) indicates the value prescribed. The
mouth opening for acoustic radiation is terminated by the impedance equivalent to that
of a rigid circular piston. The wall surface is divided into triangular surface patches over
which linear interpolation functions are assumed for both sound pressure and particle
velocity. The boundary element approach leads to discretized linear algebraic equations
with respect to the nodal pressures and velocities of the form

Figure 1. Acoustic transmission system in vocal tract.
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Figure 2. Nodes interpolated by spline functions in three-dimensional space.

[H]{p}=jvr[G]{v}, or [Y]{p}={v}, (5)

where {p} and {v} are the sound pressure and particle velocity vectors defined at the
element nodes, and [Y]=−(1/jvr)[G]−1[H] is the acoustic admittance matrix, which
includes the wall and radiation admittances. The transmission characteristics or transfer
impedance is evaluated for the pressure at the center of the mouth opening against the
constant velocity excitation over the glottis.

3. VOCAL TRACT EXPRESSION WITH A SET OF SPLINE FUNCTIONS

3.1.     

The vocal tract is a bent hollow tube with a variable cross-section. To express the tube
by a smooth curved surface, nodes are taken around the circumference and toward the
longitudinal direction, and are interpolated by piece-wise third-order spline functions for
both directions [8]. This is not directly achieved but through transformation. The
procedure is oulined as follows. As shown in Figure 2, one considers a set of nodes
Pi(i=0, 1, 2, . . . , N) in the three-dimensional space (x, y, z). One first defines the total
length of the base line as

li = s
i

j=1

sj−1, j (l0 =0), (6)

where sj−1, j = =Pj−1 −Pj = which depends on the nodal positions. The set of nodes in the
x-, y-, z-co-ordinates are projected onto the l-x, l-y and l-z planes respectively. Spline
interpolation is now applied to connect the nodes projected over these new planes. Figure
3 illustrates the nodes (li , xi) (i=0, 1, 2, . . . , N) projected over the l-x plane. Here one
then applies the third order splines to interpolate the nodes smoothly, which implies that

Figure 3. Projected expression to a l-x plane.
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Figure 4. A tube as a succession of planes (symmetrical with respect to the x-y plane).

the function must be continuous to the second derivative at each node. The second
derivative of the function x(l) can be linear for the section [li−1, li ] as

x0(l)=Mi−1
li − l

hi
+Mi

l− li−1

hi
, i=0, 1, 2, . . . , N, (7)

where hi = li − li−1, and Mi is the second derivative of x(l) at point Pi . Integrating twice
with respect to l and noticing x(li)= xi and x(li−1)= xi−1, one has

x(l)=Mi−1
(li − l)3

6hi
+Mi

(l− li)3

6hi
+0xi−1 −

Mi−1h2
i

6 1 li − l
hi

+0xi −
Mih2

i

6 1 l− li−1

hi
,

(8)

which forms (N−1)th order simultaneous equations with respect to Mi with N+1
unknowns (i=0, 1, 2, . . . , N). For the solution, both end conditions M0 and MN at l=0
and lN must be given, which are practically chosen to be zero. The third order spline
functions are thus determined for arbitrary li . The same procedure is applied to a set of
nodes projected to the l-y and l-z planes. Co-ordinate values at any position, not only the
nodal position li but also the interpolated position l, are now obtained in the Cartesian
co-ordinate space. Taking the nodes properly distributed over a tube surface, one can
express a vocal tract of arbitrary shape. Figure 4 indicates the distribution of nodal
positions Pji . Subscript j corresponds to the cross-sectional planes Sj and subscript i
indicates the order of the nodes to be connected between planes. The data are given for
the nodes on successive planes Sj . Interpolation is first taken on planes Sj for the given
data point Pji (the figure illustrates the case i=0–4) and the procedure is repeated for other
planes. Interpolation is then made for the longitudinal direction connecting the nodes with
common subscript number i. These nodes are again interpolated by spline functions as
illustrated in Figure 5. The surface is thus complete, and the vocal tract of arbitrary shape
is now expressed in terms of a set of spline functions. If necessary, new nodes can be created
on the spline curves and again interpolated. Boundary elements of reasonable size are
easily created by connecting the adjacent nodes over the surface. We employ simple
triangular plain surface patches for present boundary element models, for which the
acoustic transmission characteristics are calculated [2].
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Figure 5. Connection of the planes (upper half).

3.2.       

Figure 6 shows an example of the ‘‘observed’’ vocal tract profile in its middle plane for
the Japanese vowel a: [9]. The depictions are based on X-ray tomographic pictures and
its cross-sectional shapes cut at multiple planes and the corresponding ones modelled by
using the present procedure are given in Figure 7. The column (b) of Figure 7 indicates
the cross-section cut at the plane in the middle between planes 1' and 2', which looks
reasonable. The numbers associated correspond to the planes shown in Figure 6. The
central dotted curve in Figure 6 is drawn through the center of gravity taken at each
cross-sectional plane. These planes are perpendicular to the center of the gravity line while
the planes with primed numbers are inclined to those planes. The angle of each plane is
given at the foot of the cross-sectional shapes in Figure 7. They require 6 to 25 input data
points. The planes 10 and 11 are not given in reference [9], but are created by referring
to other sources. Figure 8 shows the cross-sectional shape 3' which is interpolated with
20 input data points given. Smooth and reasonable interpolation is possible with a
relatively small amount of data except for sharp corners. The reproduction of the sharp
corners may not be so essential acoustically so that fewer data points suffice in practice.
Figure 9 is an example of the vocal tract produced with spline functions interpolating
properly distributed data points. The surface is divided into triangular boundary element
patches which are created by connecting the nodes generated over spline curves. This
example has 40 divisions in the longitudinal direction and 12 divisions in the circumference,
which results in 1224 elements and 665 nodes. The vocal tract ends with the mouth from

Figure 6. Observed vocal tract profile in its middle plane (vowel a:) [9].
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Figure 7. Cross-sectional shapes and their simulated counterparts (numbers in the figures correspond to the
cross-sectional planes in Figure 6). (a) Observed [9]; (b) simulated with spline functions. Cross-sectional areas
are given in cm2.

which acoustic radiation takes place. With the present model, it is considered as a closed
acoustic tube with a proper radiation impedance termination, for which the end surface
is also divided into boundary elements. The termination is made with the acoustic
impedance equivalent to the radiation impedance of a circular rigid piston of the same area
in an infinite baffle, which is given as zr = rc{(ka)2/2+ j8ka/3p} where a is the radius
equivalent to the mouth opening. The vocal tract wall is made of muscle and assumed to
provide the impedance zw =(14000+ j16v) (kg/m2 s) [10]. Figure 10 compares the
cross-sectional area distribution obtained from the ‘‘observed’’ data with the one based

Figure 8. Input data points (w) and shape interpolated with spline functions (——) (plane 31). Scale values
in cm.
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Figure 9. Vocal tract reproduced with spline functions and triangular boundary element patches (vowel a:)
(not all shadowed lines are removed). (a) Bird’s-eye review; (b) side view; (c) frontal view.

on the present spline model. The agreement is satisfactory though its accuracy depends
on the number of data points given. The result shows that the present approach provides
reasonable reproduction capability. It requires only a reasonable number of data points
for the cross-section and the center of gravity curve to create the whole vocal tract. Figure
11 indicates the calculated transfer impedance of the present model, that is the sound
pressure evaluated at the center of the mouth to the constant velocity excitation over the
glottis, in which four resonances correspond to the formant frequencies.

3.3.    

The shape of the vocal tract depends on the position of the jaws and tongue, and the
shape of the mouth. Here one first assumes a basic shape or a shape in its mean position,
from which a deformation is made to create the shape corresponding to a certain vowel.
One would like to realize this by shifting the wall at the least possible number of points.
Figure 12 indicates the case when the shift of displacement dpq is made at point (xp , yq),
with which its vicinity also deforms as much as dpqvxi , where vxi is a distribution function
arbitrarily chosen. One possible answer for proper distribution could be the solution of
Poisson’s equation for an elastic membrane with the shape of the vocal tract to which a
concentrated force is applied. The vocal tract muscle is not a simple thin membrane so
that we here employ the rather empirical approach of choosing a Gaussian distribution

Figure 10. Cross-sectional area distribution (vowel a:). ——, Based on present spline method; –w–, based on
‘‘observed’’ data.
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Figure 11. Input (left) and transfer (right) impedances normalized with respect to pc (vowel a:). (a) Amplitude;
(b) phase, –w–, rigid wall; –W–, muscle wall.

vxi =exp [−{Ax(li − lp)}2], i=0, 1, 2, . . . , N, (9)

for the x direction, where li is defined in equation (6) for sk−1,k = =xk−1 − xk= · Ax gives a
factor indicating how far the shifting extends. vxi is of unit value for i= p. This is
illustrated in Figure 12. Similarly, in the y direction, one has

vyj =exp [−{Ay(lj − lq)}2], i=0, 1, 2, . . . , N. (10)

Therefore the displacement distribution dij for the surface about the center (xi , yj) where
the shifting is made is

dij = dqpvxivyi . (11)

Extension to the curved surface is straightforward, for which the definition is applied to
the orthogonal curved lines taken over the curved surface. Multiple shifting can also be
made by taking a linear combination of each independent shift. The place and the number
of the positions when the shift is taken and other factors should properly be chosen to
express the vocal tract shape of interest. Figure 13 shows an example when a part of the
wall is shifted. In Figure 13(a), the original vocal tract to which displacement is applied

Figure 12. Deformation distribution about the center of shift in the x-n plane.
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Figure 13. Deformed example. (a) Side review; (b) cross-section, left before deformation, right after
deformation.

as indicated and the deformed shape are shown. In Figure 13(b), the cross-sectional shapes
cut at various planes are shown. In the present case the nodes after deformation are
interpolated with splines and triangular element division is again made.

3.4.    

Vocal tract shape identification from the observed formant frequencies is a typical
inverse problem [11]. As no direct inversion is possible, an optimization technique must
be employed, for which a step-by-step correction approach is used. The transmission
characteristics are first calculated for the vocal tract of an assumed shape and its

Figure 14. Vocal tract shape for Japanese vowel a: with the position and directions altered.
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Figure 15. Convergence characteristic. (a) Distribution of the objective function (equi-amplitude lines) with
respect to the displacements d1 and d2; (b) displacement convergence to the original, –w–, d1 (jaw and tongue),
–W–, d2 (mouth and upper lip).

formant frequency distribution is compared with the ‘‘observed’’ one. The wall surface is
then shifted until the calculated frequency distribution meets the observed case. One needs
a measure for correction as this is considered as an optimization problem, for which one
utilizes the DFP method [12].

3.4.1. Davidon–Fletcher–Powell method
The Davidon–Fletcher–Powell method is a modification of the Newton method, which

is well-known for obtaining approximate solutions of non-linear problems progressively.
Here the approach is outlined for convenience in the following. Consider the problem of
minimizing a function W(d) for the variation of the independent variable
d= {d1, d2, . . . , dn}, and assume that W(d) can be expanded in terms of the quadrature
of d in the vicinity of its minimum. The variable that minimizes W(d) is given as

d(k+1)
min = d(k) − (B(k))−1b(k), (12)

where the components of B(k), b(k) are

B(k)
ij =

12

1d (k)
i 1d (k)

j
W(d(k)), i=0, 1, 2, . . . , N, j=1, 2, . . . , N, (13)

Figure 16. Variation of transmission characteristic (vowel a:). - - -, Initially deformed (d1 =−1·3 cm,
d2 =−2·0 cm); ——, objective (original); –w–, converged; –R–, after three repetitions.
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Figure 17. Shape transformation process, from the deformed to the original shape.

and

b(k)
i =(1/1d (k)

i ) W(d(k)), i=0, 1, 2, . . . , N, (14)

where (d)(k) is an assumed initial value or the value at step k. This approach is known as
the Newton method. Finding d(k+1)

min in a single step is possible only when the initial value
d(k) is properly chosen very close to d(k+1)

min , and repetition is generally required for
convergence. Inversion of the Hessian matrix (B(k))−1 must be evaluated at each step. The
solution procedure is not always practical because the evaluation must be made at each
operation. The DFP method avoids the direct evaluation of (B(k))−1 and instead evaluates
the matrix S(k) which is a matrix that converges to (B(k))−1 by choosing the gradient direction
for successive evaluation of the (B(k))−1 value.
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Figure 18. Vocal tract shape for Japanese vowel o: with the positions and directions to be shifted.

The procedure is as follows.
Step 1. Find to give minimum W(d(k) − l(k)S(k)b(k)) by the linear searching method in the

direction of −S(k) b(k). Upon introducing the coefficient l(k), the displacement to be shifted
in the next step will be

d(k+1) = d(k) − l(k)S(k)b(k). (15)

Step 2. The components of b(k+1) and S(k+1) are evaluated as

b(k+1)
i =

1

1d (k+1)
i

W(d(k+1))

and

S(k+1) =S(k) +
Dd(k)(Dd(k))T

(Dd(k))TDb(k) −
S(k)Db(k)(Db(k))TS(k)

(Db(k))TS(k)Db(k) , (16)

where

Db(k) = b(k+1) − b(k), Dd(k) = d(k+1) − d(k) =−l(k)S(k)b(k). (17, 18)

Figure 19. Convergence characteristics. (a) Distribution of the objective function with respect to the
displacements d1 and d2; (b) displacement convergence to the original –w–, d1 (jaw and tongue), –W–, d2 (mouth
and upper lip).
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Figure 20. Variation of transmission characteristic (vowel o:). - - -, Initially deformed (d1 =0·5 cm,
d2 =−0·5 cm); ——, objective (original); –w–, converged.

Step 3. Go back to step 1.
Upon repeating step 1 and step 2, S(k+1) arrives at (B(k+1))−1 and d(k+1) goes to dmin. For

the initial value of S(0) the unit matrix is chosen.

3.4.2. Objective function
The frequency spectra observed at the mouth for a particular vowel are the spectra that

are produced at the glottis as the result of vocal cord vibration, weighted by the
transmission frequency characteristics of the vocal tract. For simplicity, in the present
simulation one takes the transmission frequency characteristic instead of the formant
frequency spectra as they are equivalent when the spectra driven at the glottis are known.
Thus the norm between the transfer impedance evaluated at the resonances for assumed
vocal tact shape and the ‘‘measured’’ one is chosen as the objective function W, which is
to be minimized. The assumed shape that minimizes the objective function must be one
very close to the true shape. The transfer impedance Zf , as defined earlier as the solution
of equation (5), is the ratio of the pressure evaluated at the center of the mouth opening
to the velocity excitation vg over the glottis at frequency f. The objective function is now
defined as

W(d)=
1
N

s
N

f=1

=Zf (d)−Z
 f 0=2 + a(d), (19)

where Zf(d) is the transfer impedance (normalized) for the assumed shape at frequency f
and Zf 0 is the ‘‘measured’’ or observed impedance for the vocal tract of interest. d is the
shift displacement at the wall surface towards the direction indicated by the arrows in
Figure 14. a(d) is a penalty term for the limit as the shape is physically bounded within
a certain range, within which a local minimum of the objective function is sought. The
convergence is achieved when the following criterion is satisfied for a small value ow :

=W(d(i+1))−W(d(i))=Qow . (20)

4. SOME SIMULATED EXAMPLES

Here one examines the recovery of the vocal tract shape for a particular vowel from the
spectral difference between the ‘‘measured’’ transfer impedance for that vowel and the
spectra calculated for an assumed vocal tract shape. In the present simulation, the transfer
impedance calculated from the vocal tract shape of that particular vowel is used instead
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of the ‘‘measured’’ spectra. From the authors’ work [2], as one knows the true reasonable
vocal tract shape, one chooses a shape slightly deformed at several points from the known
shape as the assumed shape. Figure 14 shows the vocal tract corresponding to Japanese
a:, which consists of 496 elements with 281 nodes, providing double nodes for sharp
corners. Two positions are movable to simulate the mouth and lower jaw motion. The
variation of the vocal tract shape is limited within the extension of the motions of mouth,
jaws and tongue. The movable range is assumed to be within 22·0 cm, which is set in the
penalty term in equation (19). The distribution factor is chosen so that the movable area
extends to 2·5 cm in radius at which the displacement is only 10% of that of the center.
The objective function evaluated at two resonance frequencies corresponding to the first
and second formant frequencies of the transfer impedance characteristic and the
convergence characteristic when the DFP algorithm is used are shown in Figure 15. The
criterion of the convergence ow is chosen to be of the order of 10−7. The objective function
monotonically descends for the variation of the displacements as shown in Figure 15(a),

Figure 21. Shape transformation process, from the deformed to the original (Japanese vowel o:).
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which shows the recovery of the original positions after several operations as shown in
Figure 15(b). Figure 16 shows an example of the transfer impedance characteristic for
vowel a:, in which the vocal tract is deformed initially as much as d1 =−1·3 cm and
d2 =2·0 cm. Figure 17 shows the sequence of the transformation process of the shape from
the deformed to the original. Another initially deformed case when d1 =1·8 cm and
d2 =2·0 cm is examined. The original shapes are again recovered after nine repetitive
calculations. Figure 18 shows the vocal tract shape corresponding to the Japanese vowel
o:. Two positions and directions of the displacements are chosen where d1 creates the jaw
movement and d2 models the push of the lips. Figure 19 shows the convergence
characteristic both for the objective function and displacements. There are many local
minima in the objective function as shown in Figure 19(a), but the well corresponding to
the positions d1 =0 and d2 =0 is the deepest. For recovery simulation, the initial
deformation, d1 =0·5 cm and d2 =−0·5 cm, is assumed and convergence is shown in
Figure 19(b). Reasonable convergence is also possible. Figure 20 indicates the change of
the transfer impedance as the displacements recover. It is interesting to note that for both
cases the third and fourth formant frequencies also come close to the original frequencies
as the first and second recover the original frequencies or the ‘‘measured’’ ones. Figure
21 indicates the successive process of transformation.

5. CONCLUDING REMARKS

Here a technique has been proposed to identify the vocal tract shape from the formant
frequency spectra observed in front of the mouth. Its validity and capability were examined
through numerical simulation. Identification was shown to be possible if the initial shapes
were properly assumed. The examples shown are limited. Examination should be extended
to identifying the vocal tract shapes corresponding to all vowels starting from a certain
common shape or mean shape as the initial shape. It would also be interesting to
investigate the transformation of the vocal tract shape when changing from one vowel to
another.

The work was partly presented at The 14th Computational Electromagnetics and
Electronics Symposium, Japan Society of Simulation Technology [14].
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